Software robots in the workplace

Written by Chris Brauer in Software robots in the workplace on October 2, 2018
Automation Anywhere

Tools are a defining characteristic of what it means to be human.

We've always used tools to enhance our capabilities. From the manipulation of stone blades that allowed us to cut deeper than we could with our hands and teeth, to the majestic advances of the Industrial Revolution, which brought with it unprecedented improvements in quality of life – though some would say at a cost.

Written by Mihir Shukla in Software robots in the workplace on September 18, 2018
Automation Anywhere

Our collective obsession with job-stealing robots can cause us to overestimate the impact of automation — and obscure an important point about the human economy. What’s often missing in this debate are reliable facts and insights.

Written by Semyon Sergunin in Software robots in the workplace on September 13, 2018
How AI and RPA Empower the Knowledge Worker

Nobel Laureate Daniel Kahneman, in his book "Thinking Fast and Slow” (2011), describes two ways of human thinking - System 1 and System 2. In short:

  • System 1 is always turned on. It’s automatic, fast, unconscious and stereotypic. It is never in doubt, and extremely quick and efficient in recognizing known patterns and fitting the new concepts into the established perspectives. It is in use while you are driving on an empty road without thinking and can read text on billboards without paying attention. At work, System 1 makes you feel comfortable in familiar situations; however, it also leads you away from data-driven decision-making towards intuition and biases.
  • System 2 is the opposite – it's usually turned off. It is slow, conscious, calculating and logical. You use it for complex calculations (e.g. 13x17=?), analyzing data and for learning new skills. The problem is that System 2 is lazy, and it takes focused efforts to turn it on. That is why people in many situations fail to use it and rely on intuition instead. Here is a famous puzzle from the book:


A bat and ball cost $1.10. The bat costs one dollar more than the ball. How much does the ball cost?


More than 50% of Harvard, MIT and Princeton students gave an intuitive answer - $0.10 and it’s wrong.

System 2 consumes a lot of mental energy, which affects human’s behavior and leads to the bad choices:

“While your attention is focused on the digits, you are offered a choice between two desserts: a sinful chocolate cake and a virtuous fruit salad. The evidence suggests that you would be more likely to select the tempting chocolate cake when your mind is loaded with digits. System 1 has more influence on behavior when System 2 is busy, and it has a sweet tooth.”

Today’s knowledge workers need to find the right balance of using System 2 for critical decision-making while not overloading it with unnecessary tedious operations. That’s why we happily rely on computer systems to operate numbers and other types of structured data. For people, dealing with numbers is not fun. It requires tremendous effort from human brains to turn on System 2 and check results to avoid errors.

It is especially unnatural, when the task requires you to accurately follow the standardized prescribed rules, while operating with numbers. Rules are simple, so the human brain quickly learns the pattern and then gets bored and switches to System 1. This helps with driving a car, but not with calculating numbers, which requires the full attention and active involvement of System 2. Constant switching between System 1 and System 2 is very tiring and leads to what’s called “human errors” - a deviation from the desired result, often due to stress, fatigue and reduced attention.

Here’s where computers come into play. They make calculations instantly with no errors and strictly follow the rules. That’s why modern organizations are looking to automate any process that does not require human decisions. Automation of standardized, rule-based processes that use structured data not only leads to cost savings, but also to better performance, higher quality results. It also leads to happier employees, who can now relieve System 2 from mundane operations and focus it more on “human” tasks – creative thinking and human interactions.

This is how RPA technology appeared at the edge of corporate automation. RPA bots are dream employees: they can log into enterprise applications using credentials, just like humans, and perform standard, repetitive tasks quickly with zero errors. Unfortunately, our world does not consist of purely structured data. In fact, for an average company about 80% of its data is “dark” data, not suitable for automation. This includes data from documents, emails, meeting recordings and other types of human communications. Processing this data requires human thinking to find the relevant information in unstructured formats and put it into a structure to feed standardized business processes.

This is where AI technology brings value. It can emulate “human thinking” and detect valuable pieces of data in semi-structured documents or completely unstructured text. Now, the “bat and ball” puzzle below can be solved by machine. It would apply computer vision, an OCR, to read sentences from the book, use NLP to parse them and identify objects/prices, and convert them into structured form:

Object Price
Bat X
Ball Y
Bat + Ball X+Y = 1.10
Bat - Ball X-Y = 1

Finally, it would apply standard algorithms to solve two linear equations and get the correct answers: Bat = $1.05 and Ball = $0.05, which means that the “human error” rate would drop from 50% to zero.

We envision the future of corporations where incredible productivity is powered by RPA bots that perform repetitive operations across all divisions of the enterprise and cognitive bots adjust unstructured, “human” information into a structured form. This approach will give human workers the time and opportunity to realize their creative potential working on projects and ideas that will improve our future.

Written by Ritu Kapoor in Software robots in the workplace on August 7, 2018

For almost 30 years, Citrix has been a cornerstone of enterprise-class desktop virtualization. Today, enterprises, large and small, employ Citrix and similar virtual environments to host applications of all types. These environments help organizations keep infrastructure costs down and data secure behind a firewall. But this high-grade security brings with it a series of challenges for automation. Robotics Process Automation (RPA) vendors have struggled with accuracy in these environments for several reasons:

  • Citrix servers send an image of the application to the client; automation platforms do not have access to UI elements for accurate automation.
  • Changes in resolution and scale between host and client machines affect automation accuracy.
  • Changes in position of UI elements on the screen for web applications affect automation accuracy.

There is a solution: Automation Anywhere Enterprise, the most widely deployed digital workforce platform in the market. Through heavy investment in artificial Intelligence (AI), machine learning (ML), natural language processing (NLP) and computer vision (CV), Automation Anywhere developed AISense – a feature that utilizes intelligence to improve upon current, widely utilized techniques. AISense’s advanced capabilities and learning algorithms make automation in all environments faster and more accurate compared to existing solutions.

PwC tested the latest version of Automation Anywhere Enterprise (Enterprise 11) and were excited about the accuracy of the AISense feature. AISense is enabled in cases where standard object-based automation is not available or unreliable, such as applications exposed over Citrix, applications accessed over remote desktop, or legacy applications like Delphi, QT, or Flex. The product supports dynamic objects and creates resilient automation independent of resolution, scale and position of UI elements. In a recently published whitepaper, PwC highlighted what makes Automation Anywhere Enterprise the best solution for automating applications hosted on Citrix and other virtual environments.



Here are the benefits of AISense over other solutions:

  • Support for dynamic objects
  • Resolution-independent image recognition
  • Auto mode to search UI element
  • Image and text occurrence
  • Data burst
  • Bulk data extraction

Want to learn more?

Written by Ritu Kapoor in Software robots in the workplace on July 10, 2018

Robotic Process Automation, or RPA for short, is one of the hottest trends in the digital space. As the economy moves towards digitization and regulatory requirements increase, companies need automated, faster, more efficient processes. Bots are designed to work in this digitized environment – in fact, that’s what makes digitization so beautiful; it enables the existence of a virtual workforce that runs with near zero errors, with or without human interaction, day and night to manage your front and back office tasks.

Written by Ritu Kapoor in Software robots in the workplace on June 13, 2018

After mechanization in the 1760s (First), mass production in the 1800s (Second) and automated production in 1970s (Third), the Fourth Industrial Revolution is building upon the Third with the rise of cyber-physical systems. The increase in data volumes, low cost computational resources, new forms of human-machine interactions and advanced analytics are all driving this digital transformation. Hardware and software robots have begun to augment human workflow, making it more efficient and effective. Industry 4.0 is radically changing processes and is promising significant cost reduction, increased production and higher customer satisfaction.